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Transitions between ordered phases 
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UK 
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Abstract. A Hamiltonian which shows two successive phase transitions on cooling is 
studied by the l / n  method correct to order l / n 2 .  Despite the presence of Goldstone modes 
i n  the phase which orders first, the second phase transition is found to have ‘ordinary’ critical 
exponents determined solely by the components of the order parameter that go soft at the 
second transition. 

1. Introduction 

Phase transitions between a disordered phase and an ordered phase have been the 
subject of extensive study by renormalization group methods. (See, for example, the 
review article by Fisher (1974).) However, phase transitions between two ordered 
phases have not so far been given much attention. 

If on cooling from the disordered phase two successive phase transitions occur, and 
if the first of these is Ising-like, then we may expect the nature of the second transition to 
be determined by the components of the order parameter which are going soft at that 
transition. I€, on the other hand, the first transition is Heisenberg-like, in the sense that 
the ordering produces Goldstone bosons, then it is not clear whether or not the nature 
of the second transition will be modified by the long range forces due to the massless 
Goldstone modes. This is the question we shall investigate by using the l / n  expansion. 
The reason for using the l / n  expansion instead of the E expansion is that the one-loop 
diagrams for the inverse longitudinal susceptibility have an infrared divergence which is 
removed by summing the complete chain of bubbles which occurs in the l / n  expansion. 

The model we use for the discussion has the following free energy functional: 

where x has m components, and y has n components, and r l  and r2  are linear in 
temperature. This model has been considered by Kosterlitz et a1 (1976), and by Bruce 
and Aharony (1975), in connection with bicritical and tetracritical points, using the 
renormalization group to calculate the nature of the transition from the disordered 
phase to the ordered phases. It has also been discussed in mean-field theory for all 
values of the parameters r l ,  r 2 ,  U, v and w by Imry (1975). 

The model Hamiltonian describes a number of real systems, for example, uniaxial 
antiferromagnets in appropriately aligned fields (Kosterlitz et al  1976). However, in 
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that case the multicritical point is bicritical and there are only two ordered phases 
(x-ordered and y -ordered) corresponding to the antiferromagnetic and spin-flopped 
phases separated by a first-order line. For displacive phase transitions (Bruce and 
Aharony 1975) the multicritical point may be tetracritical, and in that case there is also a 
phase with mixed x - y  ordering. It is this latter situation which is being considered here. 
We shall not be interested in the vicinity of the tetracritical point but shall discuss the 
model for choices of the parameters such that the T- w phase diagram is of the form 
shown in figure 1, with the two phase transitions well separated in temperature. 

7' Disordered 

I 

Figure 1. Phase diagram. 

W 

In the x-ordered phase the order parameter is of the form 

x = (090, . . . 9 P ) ,  y = (0, 0, . . . , 0) 

and in the mixed x - y  phase it is of the form 

x = (O,O,  . . . , P I ,  y = (0, 0, . . . , a). (1.3) 

In mean-field theory the mixed x - y  phase forms when r2 - 3wrl/u G 0 and in the 
mixed x - y  phase 

p 2 = 2 v ( ~ 1 - 3 w r 2 / v ) / 3 ( w 2 - ~ u v )  

and 

u2= 2u(r2-3wr,/u)/3(w2-~uv) 

where w 2  < iuv .  

2. Longitudinal propagators 

In the mixed x - y  phase, it is convenient to perform the shift 

where xI is the first m-1 components of the shifted x field, y ,  is the first n - 1  
components of the shifted y field, and p and U are the exact order parameters. The free 
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energy functional of equation (1.1) then becomes 

where h, and h, are the ordering fields for x and y,  respectively, and we have introduced 
‘renormalized masses’ r r ,  Fr, rL, FL, and rxy. It should be observed that x, and yn are not 
mass eigenstates. 

The limit of large m and n will be taken in such a way that m/n remains finite, and 
the cou lings U, U and w will be taken of order l / n ,  and the order parameters p and U of 

to leading order in l / n ,  and this will require a knowledge of the longitudinal propa- 
gators in zeroth order in l / n .  

Let us denote by C(p) the sum of chains of xl bubbles with at least one bubble (see 
figure 2(a)): 

(2.3) 

order Jp n. In 0 3, the equation of state for the mixed x-y phase will be calculated to next 

C(p) = m I b ,  rr ) /2(1  +8muI(p, r r ) )  

where 

I@, r )  = ddk/(27r)d[(p + k ) ’ + r ] ( k ’ + r ) .  (2.4) 

Similarly, let us denote by D(p) the sum of chains of y ,  bubbles with at least one bubble 
(see figure 2(6)): 

Next, let us denote by T,,, T x y ,  T,, and T,, the sums of chains of bubbles of either 
type (xi or y,) beginning in an x bubble and ending in an x bubble, beginning in an x 
bubble and ending in a y bubble, beginning in a y bubble and ending in an x bubble, and 
beginning in a y bubble and ending in a y bubble, respectively. 

U1 4 Yl U1 

Figure 2. Pure chains of .x bubbles, and pure chains of y bubbles. 
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From figure 3, it can be seen that 

T,, = C/(1- w2CD) 

T,, = T,, = -WCD/(l- w2CD) 

T,, =D/(l-  w2CD). 

I c ) T , , =  0 + 

Figure 3. Chains of bubbles ending in bubbles of definite type. 

The self-energy parts for x, and y,, Z, and Zy,  and the off-diagonal self-energy part 
connecting x, to y,, ZXy, may be constructed from T,,, T,,, T,, and T,,, and the 
one-loop diagrams of figure 4. Thus, 

Z, = ( f p ~ ) ~  T,, + ( p ~ ) ~  T,, + ($p2uw)  Txy -:umK(rT) -4 wnK(FT) (2.7) 
where 

~ ( r )  = J ddk/(2.rr)d(k2+r). 

Figure 4. One-loop diagrams for longitudinal masses. 

Substituting from equation (2.6) in (2.7) gives 

(2.9) 

(2.10) 

2 1  2 Z, = p  ( g U  c+ W2D -$W’UCD)/(l- w’Co)-aUmK(r~)-~WnK(~~). 
Similarly, 
z, =(+ 2 1  (gv  2 D+w2C-gw2vCD)/(1-w2CD)-~vnK(FT)-;wmK(rT) 

and 

Z,,=pcTw[;uC+3vD-(w2+buv)CD]/(1- W2CD). (2.11) 

s = (p-l-  z)-1 (2.12) 

The matrix, S, of longitudinal propagators is now given by 
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where P-' is the matrix of free inverse propagators obtained from equation (2.2), 

) - p 2 + r l + ~ p 2 u  + t u 2 w  
p 2  + r2 + t u 2 v  + t p 2  w P-  -( 

Paw 
and E is the matrix of self-energy parts: 

(2.13) 

(2.14) 

The matrix P-l-Z may be simplied by observing that in zeroth order in l / n  

rT = r l  +ap2u + i u 2 w  +;umK(rT)+$wnK(FT) (2.15) 

and 
1 2  1 2  FT = r2 + au u + z p  w + &nK(?T) + 5 wmK(rT).  

Using (2.15) and (2.16) in (2.13), (2.14), (2.9) and (2.10) gives 

(2.16) 

(2.17) 

where 
a = p 2 + r T T + p 2 ( f u C - l ) ( w 2 D - f u ) / ( l - w 2 C D )  (2.18) 

c = p 2  + ;T + u2(4uD - 1)( w'C-$u)/(  1 - w 2cD)  (2.19) 
and 

b =PUW(;UC- l ) ( f ~ D  - l ) / ( l -  w 2 C D ) .  (2.20) 

Substituting (2.17) in (2.12), gives the longitudinal propagators 

S, = i ' / ( l -  b 2 C 1 c - l )  (2.21) 

(2.22) 

(2.23) 
The calculations of Q 3 will also require a knowledge of the vertices r,, r,, r,, and 

r, = p ( ~ u 2 c + w 2 D - - 3 w 2 u c D ) / ( i  -w2c~)-;pu (2.24) 

ry = c r ( ~ ~ 2 ~  + w 2 c - j w 2 u c D ) / ( i  - w 2 c ~ ) - ~ ~  (2.25) 

rxy = -u~( fuc-  i ) ( f u ~  - i ) / ( i  - w 2 c ~ )  (2.26) 

r,, = -pw($uc- I ) ( ; ~ D  - i ) / ( i  - w 2 c ~ ) .  (2.27) 
In addition we shall need the bubble chain contributions to Z,, Z,, and Exy which we 

r,, shown in figure 5 ,  where the bubble chains may be mixtures of xI and y, bubbles: 

and 

shall refer to as i,, gy and gXy: 
2 1  2 e, = p  (gu c+ w 2 D  - j w ' u C D ) / ( l -  W2CD) 

i, =U (gu D + w 2 C - ~ w 2 u C D ) / ( 1 - w 2 C D )  2 1  2 

and 
A 

L y  =L,. 

(2.28) 

(2.29) 

(2.30) 
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Figure 5. Vertex diagrams connecting a longitudinal propagator to a transverse loop. 

3. Equation of state in mixed x-y phase 

In this section, the equation of state in the mixed x-y phase is calculated from the free 
energy functional of equation (2.2) in the limit where the number of components m of x 
and the number of components n of y become large in such a way that m/n remains 
finite. For the purposes of the calculation the couplings, U, v and w are taken of order 
l / n  and the order parameters p and U are taken of order dn. The calculation is 
performed to next to leading order in l / n .  

We consider only the case where the gap in temperature between the two phase 
transitions is large so that p may be taken large. The question we aim to answer is 
whether the transition from the x-ordered to the mixed x-y phase has standard O(n)  
symmetric critical indices, or whether the nature of the transition is modified by the long 
range forces due to the massless Goldstone modes produced by the first transition. The 
more difficult question of what happens when the second transition occurs before the 
fluctuations from the first transition have died away, is not discussed. 

The loop diagrams contributing to the equation of state to next to leading order in 
l / n  are shown in figure 6 .  (The equation of state for the Heisenberg model has been 
calculated at this order by Brtzin and Wallace (1973).) The longitudinal propagators 
shown may be off-diagonal. The equation of state is obtained from the two conditions 

and 

(Y") = 0. (3.2) 
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Figure 6.  Diagrams for the equation of state. The external full line is either x ,  or yn, and the 
internal full lines are either x, propagators, or y. propagators, or off-diagonal x ,  to y, 
propagators, in zeroth order in l/n. The broken lines are x I  or y ,  propagators, in zeroth 
order in l l n .  

Taking the diagrams in order, condition (3.1) gives 

In writing down equation (3.3) the x-ordering field h, has been taken to be zero, and 
so we must put 

rT = 0. (3.4) 

However, the y-ordering field h, is taken to be non-zero, and 

FT = h,/ (T. (3.5) 
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Equation (3.3) has been subtracted on the critical line for the x-ordered to mixed x - y  
transition where 

(3.6) 

This subtraction has been done explicitly for the terms not involving integrals, but, for 
brevity, it is to be understood for the remaining terms. 

2 2  FT=a2=0, p = p c ,  r l = r l c  and r2=r2c.  

Similarly, condition (3.2) gives 

r2 - r2c +:vu2 + f w  (p '  - p f )  - h J u  + (integral terms) = o (3.7) 

where the integral terms for equation (3.7) may be generated from equation (3.3) by the 
substitution 

x-y, U - U ,  m - n ,  p-(+, rT*iT. (3  * 8)  
Again, these terms are to have a subtraction on the critical line of equation (3.6) 
understood. 

In the critical region for the transition from the x-ordered phase to the mixed x-y 
phase, FT and a2 are small, whereas p 2  is large, provided the two phase transitions are 
well separated in temperature, as we shall assume. Thus, we shall require equation (2.4) 
for p 2  >> r, in which case 

~ ( p ,  r)=SB(&, ~ - ; E ) B ( I - + E ,  l - fe)$pp-'  (3.9) 
where r is either rT or FT, and 

s = 2.rr2-+e/(2.rr)4-~r(2 +). (3.10) 

Apart from the terms of zeroth order in l / n ,  the dominant terms in the critical region 
are those which are logarithmically more singular than a* or as u and FT tend to 
cero. To find which terms are in this category, we need the behaviour of S , ( p ) ,  T , ( p ) ,  
Zy(p) etc in the limit p < <  1, but p 2  >>FT and p2-' >>u2. In this limit, we see from the 
equations of 8 2 that: 

(3.11) 

(3.12) 

Also 

and 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
kXy ( p )  = paw - 3 6 p ~ w I - ~ (  p ) / m n  (uv - 9 w ' ) .  (3.20) 
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Detailed inspection of the (subtracted) integrals of equations (3.3) and (3.7) now 
shows that none of the integrals involving S,, S,,, rxy or rYx is important in the critical 
region. With the aid of (3.11) to (3.20) equations (3.3) and (3.7) simplify in the critical 
region to 

r r 

+iwn J (q2+?T)-2{[(k + q ) 2 + ? T ~ - 1 - ( k 2 + i T ) - 1 } ~ y ( k ) ~ ~ ( k )  
q.k 

(q2 f ? T ) - 2 { [ ( k  + 4 ) 2  + - ( k 2  + ;T)-'}I-'(k) = 0 (3.21) 
- j q , k  

and 

r 2 - r Z c  +tuu2++w(p2-p:) +ion i, ( p ' + ~ ~ ) - ' + i u  I, s,(p)  

+tun I,, (q  2 + ;T)p2{[ (  k + 9 12 + ;T~-l - (k2 + ~~)-1)s, ( k  )r:(k) 

' (4 f ?T)-2{[ ( k  + 4 ) 2  + ?TI-' - ( k  + ?T)-'}I-'( k )  = 0. 

Using (3.21) to eliminate p 2 - p z  from (3.22) gives the equation of state 

(3.22) 
-" 1q.k  

( r z - r Z c )  -3w(rl  - r l c ) / u  - h J a + ( % u  - 3 w 2 / 2 u ) ( u 2 + L )  = 0 (3.23) 
where 

L = n  ( p 2 + F T ) - ' +  ~ , ( p )  5, I, 
(q + ?T)-2{[ ( k  + 4 ) 2  f ?TI-' - ( k  ? ~ ) - ~ } s ~  (k)r : (  k )  

S n  1q.k 

- 2 jq,k (4 + ?T)-2{[ ( k  f 4 ) 2  + ?TI-' - ( k 2  + &)-'}I-'( k ) .  (3.24) 

The integrals in equation (3.24) are understood to be subtracted on the critical line of 
equation (3.6), and S , ( k )  and T , ( k )  are now given by equations (3.12) and (3.15). 

Neglecting h,/u in the critical region and writing 

t = [r2-r2c -3w(rl  -r l , ) /u%u(iu - 3 w 2 / 2 u )  (3.25) 

equation (3.23) may be written as 

t+$ua2+&JL = o  (3.26) 

which is identical with the equation of state obtained by BrCzin and Wallace (1973) for 
the n-component Heisenberg ferromagnet. 

4. Conclusions 

It has been shown in the previous section using the l / n  expansion corre'ct to order l / n 2  
that, when the two phase transitions of figure 1 are well separated in temperature, 
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the second phase transition has ordinary O ( n )  symmetric critical indices despite the 
presence of Goldstone modes in the x-ordered phase. This happens because all the 
Feynman diagrams involving Goldstone boson internal lines turn out to be less 
important in the infrared limit than those involving only soft components of the order 
parameter as internal lines. It may be conjectured that this is a general result and that 
the critical exponents for a phase transition between two ordered phases are always 
determined solely by the components of the order parameter which are going soft at the 
transition. 

An example of such a phase transition is the transition between the AI  phase and the 
A phase of superfluid 3He. In the AI phase there are three Goldstone bosons and at the 
AI to A transition two components of the order parameter are going soft. Jones et a1 
(1976) assumed that the transition was controlled by all five fields and this resulted in an 
effective Hamiltonian with no stable renormalization group fixed points and probably a 
first order phase transition. The conclusions of the present paper suggest that the 
nature of the transition is determined only by the two components of the order 
parameter which are going soft, and the transition is then second order with O(2) 
symmetric critical exponents (the same as for the A line in liquid 4He). 
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